Super-strong materials for temperatures exceeding 2000°C

Laura Silvestroni¹¹, Hans-Joachim Kleebe², William G. Fahrenholtz³, Jeremy Watts³

¹CNR-ISTEC, Institute of Science and Technology for Ceramics, Via Granarolo 64, I-48018 Faenza, Italy

²TUD-IAG, Institute of Applied Geosciences, Schnittspahnstraße 9, D-64287 Darmstadt, Germany

³Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409

SUPPLEMENTARY INFORMATION

THERMODYNAMICS Zr-W-O system

According to some recent studies carried out on a ZrB₂ ceramic sintered with WSi₂, ¹⁸ it has been ascertained by TEM analysis that the oxygen partial pressure (PO₂) has a fundamental role in the nature of condensed phases that we find in the microstructure. To demonstrate that, we show in Fig. S1 the phase stability diagrams calculated by means of the commercial package HSC Chemistry v. 6.12 (Outokumpu research Oy, Pori, Finland). These maps are rather useful to define stability areas of condensed phases vs temperature and/or chemical potential for selected systems. Fig. S1 shows that at 1500°C W is stable for oxygen partial pressure below ~10⁻⁹ atm, whilst above this value liquid WO₃ is more favorable. This explains why W can survive in the form of nano-beads encased into the outermost ZrO₂ grains.

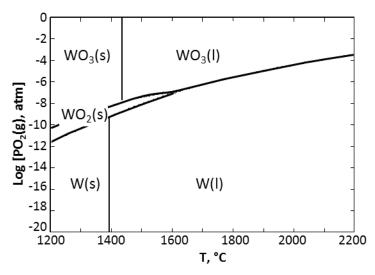


Fig. S1: Phase stability diagram of the W-O system as a function of oxygen partial pressure, $PO_2(g)$, and temperature (T).

telephone: +39 546 699723

fax: +39 546 46381

e-mail: laura.silvestroni@istec.cnr.it

¹Corresponding author: Laura Silvestroni